
F: Introduction to Bessel Functions

Bessel’s equation of order n is the equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 . (1)

Since it is a linear second order differential equation, two linearly independent
solutions are the Bessel functions of first and second kinds, notationally given
by Jn(x), Yn(x), so the general solution to (1) is y(x) = C1Jn(x) + C2Yn(x).
Some properties are:

1. Much about Jn(x) comes from the series expansion

∞∑
k=0

(−1)k

k!(n+ k)!

(x
2

)2k+n
.

For example,

Jn(0) =

{
1 n = 0
0 n > 0

2. Another consequence of the series representation of Jn(x) are the shift
formulas :

d

dx

[
x−nJn(x)

]
= −x−nJn+1(x)

d

dx
[xnJn(x)] = xnJn−1(x)

For example, J
′
0(x) = −J1(x). These indicate that Jn(x) oscillates: the

first shift formula shows d
dx

[x−nJn(x)] must vanish between successive
zeros of x−nJn+1(x). That is, the zeros of Jn, Jn+1 separate each other
(see Figure 1).

3. As x increases Jn(x) becomes closer and closer to
√

2
πx

cos[x−π
4
(1+2n)],

that is, like cosine with an (n dependent) phase shift, and an amplitude
that decays like 1/

√
x. A way we would write this statement of fact is

that Jn(x) ∼
√

2
πx

cos[x − π
4
(1 + 2n)] as x → ∞. Similarly, Yn(x) ∼√

2
πx

sin[x− π
4
(1 + 2n)] as x→∞.
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Figure 1: The first five Bessel functions of the first kind.

4. As x → 0, Jn(x) remains bounded (see Figure 1), but Yn(x) goes
unbounded as x→ 0. See, for example, Figure 2. Put another way,

Y0(x) ∼ ln(x) · {power series in x} x→ 0

while for n > 0

Yn(x) ∼ 1

xn
· {power series in x} x→ 0

Therefore, for our diffusion problem (or a vibration problem) in the
disk, Yn(x) is not of physical significance for us.

5. A consequence of the above properties, with, for each fixed n,{
λnk, Jn(

√
λnkr)

}∞
k=1

being the set of eigenvalue-eigenfunction pairs,
then the orthogonality relation for Jn(x) is given by

∫ a

0

Jn(
√
λnjr)Jn(

√
λnkr) rdr =


a2

2

(
J

′
n(
√
λnka)

)2
j = k

0 j 6= k
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Figure 2: Graph of J0(x) and Y0(x) and what they look like for small and
large argument.

In these Notes we are introduced to the order zero equation first, namely

x2
d2y

dx2
+ x

dy

dx
+ x2y = 0 (2)

For the diffusion problem on the disk, example 2, Section 18, we have solution
φ(r) = C1J0(

√
λr). Thus, we must have J0(

√
λa) = 0.

From Figure 2 it is clear that J0 (and Y0) oscillate, so there is an infinite
number of zeros for J0, J0(s) = 0 → 0 < s1 < s2 < s3 < . . ., which
implies λk = (sk/a)2 for k = 1, 2, . . . being the required eigenvalues for
the disk problem. There is no neat formula for the zeros of J0, but they
are tabulated in various tables, and easily estimated using various software
packages like Maple, Mathematica, Matlab, MathCad, etc. For example,
in Maple one would use the operator BesselJZeros(0,k,. . . ,m) to generate a
sequence of zeros of J0(x) from the kth to the mth (inclusive) zero.

For the disk problem, with eigenvalues λn = (sn/a)2, and associated
eigenfunctions φn(r) = J0(

√
λnr), we have T (t) = Tn(t) = e−λnDt, so the

solution to that problem has the form

u(r, t) =
∞∑
n=1

ane
−λnDtJ0(

√
λnr) . (3)
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Hence, letting t→ 0, we write

f(r) =
∞∑
n=1

anJ0(
√
λnr) . (4)

Now (4) is often called a Bessel-Fourier series for f(r). To complete the
problem we need to multiply both sides of (4) by σ(r)φm(r) = J0(

√
λmr)r

and integrate:∫ a

0

f(r)J0(
√
λmr)rdr =

∞∑
n=1

an

∫ a

0

J0(
√
λnr)J0(

√
λmr)rdr .

This might look a bit more complicated than when we were dealing with
sines and cosines, but our procedure has remained unaltered. From the
orthogonality condition above, we have∫ a

0

f(r)J0(
√
λmr)rdr = am

∫ a

0

J2
0 (
√
λmr)rdr ;

that is,

am =

∫ a
0
f(r)J0(

√
λmr)rdr∫ a

0
J2
0 (
√
λmr)rdr

=

∫ a
0
f(r)J0(

√
λmr)rdr

(a2/2)(J
′
0(
√
λma))2

=
2

a2

∫ a
0
f(r)J0(

√
λmr)rdr

(J1(
√
λma))2

.

Remark: There is a slight inconsistency in the notation here regarding the
eigenvalues. Since we mainly deal with J0, for order n = 0, its mth eigenvalue
is written λm rather than λ0m.

Remark: There are a large number of special functions, besides the Bessel
functions, which satisfy differential equations, and come from solving partial
differential equations. A few examples of equations are:

1. Legendre: d
dx

((1− x2)dφ
dx

) + λφ = 0 , |x| < 1 .

2. Tchebycheff : d
dx

(
√

1− x2 dφ
dx

) + λ(1− x2)−1/2φ = 0 , |x| < 1 .

3. Hermite: d2v
dx2

+ (1 − x2)v + λv = 0 , |x| < ∞. Here v = φe−x
2/2,

where φ = Hn(x) is a Hermite polynomial; then φ solves the equation
d
dx

(e−x
2 dφ
dx

) + λe−x
2
φ = 0 , |x| <∞ .
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4. Laguerre: d
dx

(xe−x dφ
dx

) + λe−xφ = 0 , x > 0 .

Exercises:
Notice that equation xy′′ + y′ + xy = 0 is (2), that is, Bessel’s equation of
order zero, and that xy′′ + y′ + x−1y = 0 is a Cauchy-Euler equation. What
about the equation xy′′ + y′ + y = 0?

1. Show that the general solution to the equation

x
d2y

dx2
+
dy

dx
+ y = 0

is y(x) = C1J0(2
√
x) + C2Y0(2

√
x). (Let y(x) = f(z), where z =

√
x,

and obtain the equation for f .)

2. A hanging chain of length l undergoes small oscillations in the plane.
Assuming that tensile force in the chain does not differ appreciably
from that required to withstand gravity, the governing equation is

g
∂

∂x

(
x
∂u

∂x

)
=
∂2u

∂t2

for small lateral displacements u(x, t), where x is measured upward
from the free end of the chain, and g is the constant acceleration of
gravity. Assume u(x, 0) = f(x), ut(x, 0) = 0. Obtain the series solution
for u.1 (The transformation z =

√
x and the exercise above will be

useful.)

3. Suppose we reconsider the hanging chain problem of part 2, but now,
instead of a fixed end at x = l, we are able to shake this end at the
ceiling periodically, say u(l, t) = A cos(ωt). If we look for a solution of
the form u(x, t) = U(x) cos(ωt), find U(x).2

1This problem came from from the book Partial differential Equations, Theory and
Technique by Carrier and Pearson.

2This problem was given to me by R. Rostamian.
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