F: Introduction to Bessel Functions

Bessel’s equation of order n is the equation

d*y  dy

Since it is a linear second order differential equation, two linearly independent
solutions are the Bessel functions of first and second kinds, notationally given
by J.(z), Yn(x), so the general solution to (1) is y(z) = CyJ,(x) + CoY, ().
Some properties are:

1. Much about J,(z) comes from the series expansion

%k‘ n+k’ ( )2k+n '

For example,
1 n=0
Jn(0) = { 0 n>0

2. Another consequence of the series representation of J,,(x) are the shift
formulas:

[ )} = —z " Jp1(2)
d n . .n
(@) = " ()

For example, J(7) = —Jl( ). These indicate that J,,(z) oscillates: the
first shift formula shows - [z7".J,(x)] must vanish between successive
zeros of 7" J,11(x). T hat is, the zeros of J,, J,11 separate each other
(see Figure 1).

3. Asz increases J, () becomes closer and closer to 4/ = cos[z—Z(1+2n)],

that is, like cosine with an (n dependent) phase shift, and an amplitude
that decays like 1/y/z. A way we would write this statement of fact is

that J,(z) ~ y/= cos[t — Z(1 + 2n)] as @ — oo. Similarly, V,(z) ~

\/ = sinfz — Z(1 4 2n)] as  — oo.



> plot({BesselJ(0,x) ,BesselJ(1l,x) , BesselJ(2,x),BesselJ(3,x) , Besseld(
4,x)},%x=0..10,color=black) ;

Figure 1: The first five Bessel functions of the first kind.

4. As x — 0, J,(x) remains bounded (see Figure 1), but Y, (x) goes
unbounded as x — 0. See, for example, Figure 2. Put another way,

Yo(z) ~ In(z) - {power series in z} x—0
while for n > 0
1 _—
Y,(x) ~ — - {power series in x} = — 0
xn

Therefore, for our diffusion problem (or a vibration problem) in the
disk, Y, (x) is not of physical significance for us.

5. A consequence of the above properties, with, for each fixed n,
{/\nk, In(V/ /\nkT)}Zozl being the set of eigenvalue-eigenfunction pairs,
then the orthogonality relation for J,(x) is given by

< (J(Vra)) G =k

0 £k

/Oa I ( )\njr)Jn(\/)\_mcr) rdr =



> plot({BesselJ(0,x) ,BesselY(0,x)},x=0.1..20, color=black);
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Figure 2: Graph of Jy(z) and Yy(z) and what they look like for small and
large argument.

In these Notes we are introduced to the order zero equation first, namely

d? d
xQd—;é+x£+x2y:O (2)
For the diffusion problem on the disk, example 2, Section 18, we have solution
d(r) = C1Jo(v/Ar). Thus, we must have Jo(v/Aa) = 0.

From Figure 2 it is clear that Jy (and Yp) oscillate, so there is an infinite
number of zeros for Jy, Jo(s) =0 — 0 < s < s < 83 < ..., which
implies \y = (s/a)? for k = 1,2,... being the required eigenvalues for
the disk problem. There is no neat formula for the zeros of Jy, but they
are tabulated in various tables, and easily estimated using various software
packages like Maple, Mathematica, Matlab, MathCad, etc. For example,
in Maple one would use the operator BesselJZeros(0,k,...,m) to generate a
sequence of zeros of Jy(x) from the kth to the mth (inclusive) zero.

For the disk problem, with eigenvalues A\, = (s,/a)? and associated
eigenfunctions ¢, (r) = Jo(v/ A1), we have T(t) = T,(t) = e P! so the
solution to that problem has the form

u(r,t) = Zane”\"DtJo(\/)\_nr) : (3)



Hence, letting t — 0, we write
= anJo(\/Aar) - (4)
n=1

Now (4) is often called a Bessel-Fourier series for f(r). To complete the
problem we need to multiply both sides of (4) by o (7). (r) = Jo(V A1)
and integrate:

/Oa f(r)Jo(mr)rdr = Zan /Oa Jo(\/)\_nr)Jo(\/mr)rdr )

This might look a bit more complicated than when we were dealing with
sines and cosines, but our procedure has remained unaltered. From the
orthogonality condition above, we have

/Oa F)Jo(v/ Nur)rdr = ay, /a J2(\/ Ar)rdr ;

0
that is,

fo 7)Jo(N Apr)rdr fo ) Jo(V/ A rdr 2 fo ) Jo(V/ A rdr .

T RO e rdr (@22)(y(ma)? @ (v Ama)?

Remark: There is a slight inconsistency in the notation here regarding the
eigenvalues. Since we mainly deal with Jy, for order n = 0, its mth eigenvalue
is written A, rather than Ag,,.

Remark: There are a large number of special functions, besides the Bessel
functions, which satisfy differential equations, and come from solving partial
differential equations. A few examples of equations are:

1. Legendre: L((1—2%)%) 4+ p=0, |2/ <1 .

2. Tchebycheff: £(v/1—22%) 4+ A\(1—2?)"Y2¢ =0, |z|<1 .

3. Hermite: 211273 +(1—a)v+ =0, |z| < oo Herev = ge /2
where ¢ = H,(z) is a Hermite polynomial; then ¢ solves the equation

di(’x d¢)+>\e"”¢—0 lz] < 0o .
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4. Laguerre: %(xe*‘”%) +XeFp=0, >0 .

Ezercises:

Notice that equation xzy” + v’ + xy = 0 is (2), that is, Bessel’s equation of
order zero, and that xy” + v’ + 271y = 0 is a Cauchy-Euler equation. What
about the equation xy” + vy’ +y = 07?

1. Show that the general solution to the equation

d’y  dy
is y(z) = Crb(2VE) + CYp(2y/E). (Let y(x) = (2), where = = VA,
and obtain the equation for f.)

2. A hanging chain of length [ undergoes small oscillations in the plane.
Assuming that tensile force in the chain does not differ appreciably
from that required to withstand gravity, the governing equation is

o ( ou 0%u

- xr— —_

Yor \"ox) ~ or
for small lateral displacements wu(z,t), where x is measured upward
from the free end of the chain, and ¢ is the constant acceleration of
gravity. Assume u(z,0) = f(x),u:(x,0) = 0. Obtain the series solution

for u.! (The transformation z = /z and the exercise above will be
useful.)

3. Suppose we reconsider the hanging chain problem of part 2, but now,
instead of a fixed end at © = [, we are able to shake this end at the
ceiling periodically, say u(l,t) = Acos(wt). If we look for a solution of
the form u(z,t) = U(x) cos(wt), find U(x).?

'This problem came from from the book Partial differential Equations, Theory and
Technique by Carrier and Pearson.
2This problem was given to me by R. Rostamian.



