

F: Introduction to Bessel Functions

Bessel's equation of order n is the equation

$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0 . \quad (1)$$

Since it is a linear second order differential equation, two linearly independent solutions are the *Bessel functions of first and second kinds*, notationally given by $J_n(x)$, $Y_n(x)$, so the general solution to (1) is $y(x) = C_1 J_n(x) + C_2 Y_n(x)$. Some properties are:

1. Much about $J_n(x)$ comes from the series expansion

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!} \left(\frac{x}{2}\right)^{2k+n} .$$

For example,

$$J_n(0) = \begin{cases} 1 & n = 0 \\ 0 & n > 0 \end{cases}$$

2. Another consequence of the series representation of $J_n(x)$ are the *shift formulas*:

$$\begin{aligned} \frac{d}{dx} [x^{-n} J_n(x)] &= -x^{-n} J_{n+1}(x) \\ \frac{d}{dx} [x^n J_n(x)] &= x^n J_{n-1}(x) \end{aligned}$$

For example, $J'_0(x) = -J_1(x)$. These indicate that $J_n(x)$ oscillates: the first shift formula shows $\frac{d}{dx} [x^{-n} J_n(x)]$ must vanish between successive zeros of $x^{-n} J_{n+1}(x)$. That is, the zeros of J_n, J_{n+1} separate each other (see Figure 1).

3. As x increases $J_n(x)$ becomes closer and closer to $\sqrt{\frac{2}{\pi x}} \cos[x - \frac{\pi}{4}(1+2n)]$, that is, like cosine with an (n dependent) phase shift, and an amplitude that decays like $1/\sqrt{x}$. A way we would write this statement of fact is that $J_n(x) \sim \sqrt{\frac{2}{\pi x}} \cos[x - \frac{\pi}{4}(1+2n)]$ as $x \rightarrow \infty$. Similarly, $Y_n(x) \sim \sqrt{\frac{2}{\pi x}} \sin[x - \frac{\pi}{4}(1+2n)]$ as $x \rightarrow \infty$.

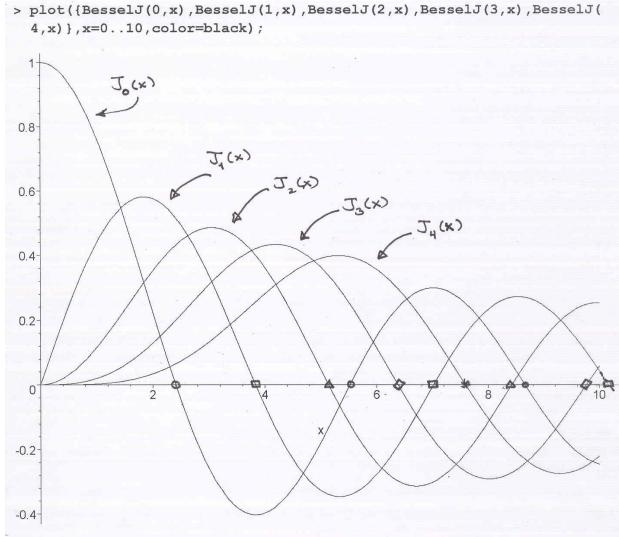


Figure 1: The first five Bessel functions of the first kind.

4. As $x \rightarrow 0$, $J_n(x)$ remains bounded (see Figure 1), but $Y_n(x)$ goes **unbounded** as $x \rightarrow 0$. See, for example, Figure 2. Put another way,

$$Y_0(x) \sim \ln(x) \cdot \{\text{power series in } x\} \quad x \rightarrow 0$$

while for $n > 0$

$$Y_n(x) \sim \frac{1}{x^n} \cdot \{\text{power series in } x\} \quad x \rightarrow 0$$

Therefore, for our diffusion problem (or a vibration problem) in the disk, $Y_n(x)$ is not of physical significance for us.

5. A consequence of the above properties, with, for each fixed n , $\{\lambda_{nk}, J_n(\sqrt{\lambda_{nk}}r)\}_{k=1}^{\infty}$ being the set of eigenvalue-eigenfunction pairs, then the orthogonality relation for $J_n(x)$ is given by

$$\int_0^a J_n(\sqrt{\lambda_{nj}}r) J_n(\sqrt{\lambda_{nk}}r) r dr = \begin{cases} \frac{a^2}{2} (J'_n(\sqrt{\lambda_{nk}}a))^2 & j = k \\ 0 & j \neq k \end{cases}$$

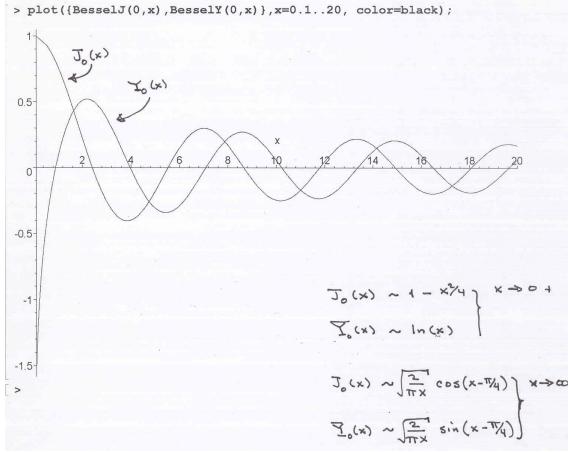


Figure 2: Graph of $J_0(x)$ and $Y_0(x)$ and what they look like for small and large argument.

In these Notes we are introduced to the order zero equation first, namely

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + x^2 y = 0 \quad (2)$$

For the diffusion problem on the disk, example 2, Section 18, we have solution $\phi(r) = C_1 J_0(\sqrt{\lambda}r)$. Thus, we must have $J_0(\sqrt{\lambda}a) = 0$.

From Figure 2 it is clear that J_0 (and Y_0) oscillate, so there is an infinite number of zeros for J_0 , $J_0(s) = 0 \rightarrow 0 < s_1 < s_2 < s_3 < \dots$, which implies $\lambda_k = (s_k/a)^2$ for $k = 1, 2, \dots$ being the required eigenvalues for the disk problem. There is no neat formula for the zeros of J_0 , but they are tabulated in various tables, and easily estimated using various software packages like Maple, Mathematica, Matlab, MathCad, etc. For example, in Maple one would use the operator `BesselJZeros(0,k,...,m)` to generate a sequence of zeros of $J_0(x)$ from the k th to the m th (inclusive) zero.

For the disk problem, with eigenvalues $\lambda_n = (s_n/a)^2$, and associated eigenfunctions $\phi_n(r) = J_0(\sqrt{\lambda_n}r)$, we have $T(t) = T_n(t) = e^{-\lambda_n D t}$, so the solution to that problem has the form

$$u(r, t) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n D t} J_0(\sqrt{\lambda_n} r) . \quad (3)$$

Hence, letting $t \rightarrow 0$, we write

$$f(r) = \sum_{n=1}^{\infty} a_n J_0(\sqrt{\lambda_n} r) . \quad (4)$$

Now (4) is often called a **Bessel-Fourier series** for $f(r)$. To complete the problem we need to multiply both sides of (4) by $\sigma(r)\phi_m(r) = J_0(\sqrt{\lambda_m} r)r$ and integrate:

$$\int_0^a f(r) J_0(\sqrt{\lambda_m} r) r dr = \sum_{n=1}^{\infty} a_n \int_0^a J_0(\sqrt{\lambda_n} r) J_0(\sqrt{\lambda_m} r) r dr .$$

This might look a bit more complicated than when we were dealing with sines and cosines, but our procedure has remained unaltered. From the orthogonality condition above, we have

$$\int_0^a f(r) J_0(\sqrt{\lambda_m} r) r dr = a_m \int_0^a J_0^2(\sqrt{\lambda_m} r) r dr ;$$

that is,

$$a_m = \frac{\int_0^a f(r) J_0(\sqrt{\lambda_m} r) r dr}{\int_0^a J_0^2(\sqrt{\lambda_m} r) r dr} = \frac{\int_0^a f(r) J_0(\sqrt{\lambda_m} r) r dr}{(a^2/2)(J_0'(\sqrt{\lambda_m} a))^2} = \frac{2}{a^2} \frac{\int_0^a f(r) J_0(\sqrt{\lambda_m} r) r dr}{(J_1(\sqrt{\lambda_m} a))^2} .$$

Remark: There is a slight inconsistency in the notation here regarding the eigenvalues. Since we mainly deal with J_0 , for order $n = 0$, its m th eigenvalue is written λ_m rather than λ_{0m} .

Remark: There are a large number of **special functions**, besides the Bessel functions, which satisfy differential equations, and come from solving partial differential equations. A few examples of equations are:

1. **Legendre:** $\frac{d}{dx}((1-x^2)\frac{d\phi}{dx}) + \lambda\phi = 0$, $|x| < 1$.
2. **Tchebycheff:** $\frac{d}{dx}(\sqrt{1-x^2}\frac{d\phi}{dx}) + \lambda(1-x^2)^{-1/2}\phi = 0$, $|x| < 1$.
3. **Hermite:** $\frac{d^2v}{dx^2} + (1-x^2)v + \lambda v = 0$, $|x| < \infty$. Here $v = \phi e^{-x^2/2}$, where $\phi = H_n(x)$ is a Hermite polynomial; then ϕ solves the equation $\frac{d}{dx}(e^{-x^2}\frac{d\phi}{dx}) + \lambda e^{-x^2}\phi = 0$, $|x| < \infty$.

4. **Laguerre:** $\frac{d}{dx}(xe^{-x}\frac{d\phi}{dx}) + \lambda e^{-x}\phi = 0$, $x > 0$.

Exercises:

Notice that equation $xy'' + y' + xy = 0$ is (2), that is, Bessel's equation of order zero, and that $xy'' + y' + x^{-1}y = 0$ is a Cauchy-Euler equation. What about the equation $xy'' + y' + y = 0$?

1. Show that the general solution to the equation

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

is $y(x) = C_1 J_0(2\sqrt{x}) + C_2 Y_0(2\sqrt{x})$. (Let $y(x) = f(z)$, where $z = \sqrt{x}$, and obtain the equation for f .)

2. A hanging chain of length l undergoes small oscillations in the plane. Assuming that tensile force in the chain does not differ appreciably from that required to withstand gravity, the governing equation is

$$g\frac{\partial}{\partial x} \left(x\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial t^2}$$

for small lateral displacements $u(x, t)$, where x is measured upward from the free end of the chain, and g is the constant acceleration of gravity. Assume $u(x, 0) = f(x)$, $u_t(x, 0) = 0$. Obtain the series solution for u .¹ (The transformation $z = \sqrt{x}$ and the exercise above will be useful.)

3. Suppose we reconsider the hanging chain problem of part 2, but now, instead of a fixed end at $x = l$, we are able to shake this end at the ceiling periodically, say $u(l, t) = A \cos(\omega t)$. If we look for a solution of the form $u(x, t) = U(x) \cos(\omega t)$, find $U(x)$.²

¹This problem came from the book *Partial differential Equations, Theory and Technique* by Carrier and Pearson.

²This problem was given to me by R. Rostamian.